
Introduction to SHA-3 and Keccak

Joan Daemen

STMicroelectronics and Radboud University

Crypto summer school 2015
Šibenik, Croatia, May 31 - June 5, 2015

1 / 45

Outline

1 The SHA-3 competition

2 The sponge construction

3 Inside Keccak

4 The SHA-3 FIPS

2 / 45

The SHA-3 competition

Outline

1 The SHA-3 competition

2 The sponge construction

3 Inside Keccak

4 The SHA-3 FIPS

3 / 45

The SHA-3 competition

Cryptographic hash functions

Function h from Z∗2 to Zn2
Typical values for n: 128, 160, 256, 512

Pre-image resistant: it shall take 2n effort to
given y, find x such that h(x) = y

2nd pre-image resistance: it shall take 2n effort to
given M and h(M), find another M′ with h(M′) = h(M)

Collision resistance: it shall take 2n/2 effort to
find x1 ̸= x2 such that h(x1) = h(x2)

More general: should behave like a random oracle

4 / 45

The SHA-3 competition

The origins of the SHA-3 competition

2005-2006: NIST thinks about having a SHA-3 contest
MD5 and standard SHA-1 were damaged by attacks
SHA-2 based on the same principles than MD5 and SHA-1
open call for SHA-2 successor
…and for analysis, comparisons, etc.

October 2008: Deadline for proposals
more efficient than SHA-2
output lengths: 224, 256, 384, 512 bits
security: collision and (2nd) pre-image resistant
specs, reference and optimized code, test vectors
design rationale and preliminary analysis
patent waiver

5 / 45

The SHA-3 competition

The SHA-3 competition

First round: October 2008 to summer 2009
64 submissions, 51 accepted
37 presented at 1st SHA-3 candidate conf. in Leuven, February 2009
many broken by cryptanalysis
NIST narrowed down to 14 semi-finalists

Second round: summer 2009 to autumn 2010
analysis presented at 2nd SHA-3 conf. in Santa Barbara, August 2010
NIST narrowed down to 5 finalists

Third round: autumn 2010 to October 2012
analysis presented at 3rd SHA-3 conf. in Washington, March 2012

October 2, 2012: NIST announces Keccak as SHA-3 winner

6 / 45

The SHA-3 competition

NIST SHA-3: the battlefield

ARIRANG

AURORA

BLAKEBlender

BOOLE

CHI

CRUNCHCubeHash

DCH

EDON-R

EnRUPT

ESSENCE FSB

Fugue

Grøstl

JH

LANE

Lesamnta

Luffa

MCSSHA3

MD6

Sgàil

Shabal

SHAMATA

SIMD

Skein

StreamHash

SWIFFTX

Tangle

TIB3

Twister

Vortex

WaMM

HASH 2X

Maraca

Ponic

ZK-Crypt

Waterfall

Sarmal

BMW

SANDstorm

Spectral Hash

DynamicSHA

NKS2D

Abacus

MeshHash

DynamicSHA 2

Khichidi-1

ECOH

LUX

NaSHA

Hamsi

Keccak

SHAvite-3

ECHO
Cheetah

2005 2006 2007 2008 2009 2010 2011 2012

16/06/2009

[courtesy of Christophe De Cannière]

7 / 45

The sponge construction

Outline

1 The SHA-3 competition

2 The sponge construction

3 Inside Keccak

4 The SHA-3 FIPS

8 / 45

The sponge construction

Sponge origin: RadioGatún

Initiative to design hash/stream function (late 2005)
rumours about NIST call for hash functions
starting point: fixing Panama [Daemen, Clapp, FSE 1998]
with long-time colleagues Gilles Van Assche and Michaël Peeters
and ST Italy colleague Guido Bertoni joining in

RadioGatún [Keccak team, NIST 2nd hash workshop 2006]

more conservative than Panama
arbitrary output length
expressing security claim for arbitrary output length function

Sponge functions [Keccak team, Ecrypt hash, 2007]

random sponge instead of random oracle as security goal
sponge construction calling random permutation
… closest thing to a random oracle with a finite state …

9 / 45

The sponge construction

The sponge construction

Generalizes hash function: extendable output function (XOF)
Calls a b-bit permutation f, with b = r+ c

r bits of rate
c bits of capacity (security parameter)

10 / 45

The sponge construction

Generic security: indistinguishability

Success probability of distinguishing between:
ideal function: a monolithic random oracle RO
construction S [F] calling an random permutation F

Adversary D sends queries (M, ℓ) according to algorithm

Express Pr(success|D) as a function of total cost of queries N

Problem: in real world, F is available to adversary

11 / 45

The sponge construction

Generic security: indifferentiability [Maurer et al. (2004)]

Applied to hash functions in [Coron et al. (2005)]

distinguishing mode-of-use from ideal function (RO)
covers adversary with access to permutation F at left
additional interface, covered by a simulator at right

Methodology:
build P that makes left/right distinguishing difficult
prove bound for advantage given this simulator P
P may query RO for acting S-consistently: P [RO]

12 / 45

The sponge construction

Generic security of the sponge construction

Concept of advantage:

Pr(success|D) = 1
2
+

1
2
Adv(D)

Theorem (Bound on the RO-differentiating advantage of sponge)

A ≤ N2

2c+1

A: differentiating advantage of random sponge from random oracle
N: total data complexity
c: capacity
[Keccak team, Eurocrypt 2008]

13 / 45

The sponge construction

Implications of the bound

Let D: n-bit output pre-image attack. Success probability:
for random oracle: Ppre(D|RO) = q2−n

for random sponge: Ppre(D|S [F]) = ?

A distinguisher D with A = Ppre(D|S [F])− Ppre(D|RO)
do pre-image attack
if success, conclude random sponge and RO otherwise

But we have a proven bound A ≤ N2

2c+1 , so

Ppre(D|S [F]) ≤ Ppre(D|RO) +
N2

2c+1

Can be generalized to any attack

Note that A is independent of output length n

14 / 45

The sponge construction

Implications of the bound (cont’d)

Informally, random sponge is like random oracle for N < 2c/2

Security strength for output length n:
collision-resistance: min(c/2, n/2)
first pre-image resistance: min(c/2, n)
second pre-image resistance: min(c/2, n)

Proof assumes f is a random permutation
provably secure against generic attacks
…but not against attacks that exploit specific properties of f

No security against multi-stage adversaries

15 / 45

The sponge construction

Design approach

Hermetic sponge strategy

Instantiate a sponge function

Claim a security level of 2c/2

Our mission

Design permutation f without exploitable properties

16 / 45

The sponge construction

How to build a strong permutation

Like a block cipher
Sequence of identical rounds
Round consists of sequence of simple step mappings

…but not quite
No key schedule
Round constants instead of round keys
Inverse permutation need not be efficient

17 / 45

Inside Keccak

Outline

1 The SHA-3 competition

2 The sponge construction

3 Inside Keccak

4 The SHA-3 FIPS

18 / 45

Inside Keccak

Keccak[r, c]

Sponge function using the permutation Keccak-f
7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

19 / 45

Inside Keccak

Keccak[r, c]

Sponge function using the permutation Keccak-f
7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

19 / 45

Inside Keccak

Keccak[r, c]

Sponge function using the permutation Keccak-f
7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

19 / 45

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
state

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

20 / 45

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
lane

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

20 / 45

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
slice

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

20 / 45

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
row

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

20 / 45

Inside Keccak

The state: an array of 5× 5× 2ℓ bits

x

y z
column

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

20 / 45

Inside Keccak

χ, the nonlinear mapping in Keccak-f

“Flip bit if neighbors exhibit 01 pattern”

Operates independently and in parallel on 5-bit rows

Cheap: small number of operations per bit

21 / 45

Inside Keccak

θ′, a first attempt at mixing bits

Compute parity cx,z of each column

Add to each cell parity of neighboring columns:

bx,y,z = ax,y,z ⊕ cx−1,z ⊕ cx+1,z

Cheap: two XORs per bit

+ =

column parity θʹ effect

combine

22 / 45

Inside Keccak

Diffusion of θ′

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

23 / 45

Inside Keccak

Diffusion of θ′ (kernel)

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

24 / 45

Inside Keccak

Diffusion of the inverse of θ′

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x2 + x3

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

25 / 45

Inside Keccak

ρ for inter-slice dispersion

We need diffusion between the slices …
ρ: cyclic shifts of lanes with offsets

i(i+ 1)/2 mod 2ℓ, with
(
x
y

)
=

(
0 1
2 3

)i−1 (
1
0

)
Offsets cycle through all values below 2ℓ

26 / 45

Inside Keccak

ι to break symmetry

XOR of round-dependent constant to lane in origin
Without ι, the round mapping would be symmetric

invariant to translation in the z-direction
susceptible to rotational cryptanalysis

Without ι, all rounds would be the same
susceptibility to slide attacks
defective cycle structure

Without ι, we get simple fixed points (000 and 111)

27 / 45

Inside Keccak

A first attempt at Keccak-f

Round function: R = ι ◦ ρ ◦ θ′ ◦ χ

Problem: low-weight periodic trails by chaining:

χ θʹ ρ

χ: propagates unchanged with weight 4
θ′: propagates unchanged, because all column parities are 0
ρ: in general moves active bits to different slices …
…but not always

28 / 45

Inside Keccak

The Matryoshka property

χ θʹ ρ

χ θʹ ρ

Patterns in Q′ are z-periodic versions of patterns in Q

Weight of trail Q′ is twice that of trail Q (or 2n times in general)

29 / 45

Inside Keccak

π for disturbing horizontal/vertical alignment

ax,y ← ax′,y′ with
(
x
y

)
=

(
0 1
2 3

)(
x′

y′

)

30 / 45

Inside Keccak

A second attempt at Keccak-f

Round function: R = ι ◦ π ◦ ρ ◦ θ′ ◦ χ

Solves problem encountered before:

χ θʹ ρ π

π moves bits in same column to different columns!

Almost there, still a final tweak …

31 / 45

Inside Keccak

Tweaking θ′ to θ

θ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4z

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)
32 / 45

Inside Keccak

Inverse of θ

θ

1+
(
1+ y+ y2 + y3 + y4

)
Q,

with Q = 1+ (1+ x+ x4z)−1 mod
⟨
1+ x5, 1+ zw

⟩
Q is dense, so:

Diffusion from single-bit output to input very high
Increases resistance against LC/DC and algebraic attacks

33 / 45

Inside Keccak

Keccak-f summary

Round function:
R = ι ◦ χ ◦ π ◦ ρ ◦ θ

Number of rounds: 12+ 2ℓ
Keccak-f[25] has 12 rounds
Keccak-f[1600] has 24 rounds

34 / 45

The SHA-3 FIPS

Outline

1 The SHA-3 competition

2 The sponge construction

3 Inside Keccak

4 The SHA-3 FIPS

35 / 45

The SHA-3 FIPS

The long road to the SHA-3 FIPS

February 2013: NIST-Keccak-team meeting
SHA-2 replacement by now less urgent
…but Keccak is more than just hashing!

NIST disseminates joint SHA-3 proposal
Summer 2013: Snowden revelations

alleged NSA backdoor in DUAL EC DRBG
SHA-3 proposal framed as “NIST weakening Keccak”

Early 2014: standard takes shape addressing public concerns

Friday, April 4, 2014: draft FIPS 202 for public comments

August 2014: NIST announces plans at SHA-3 conference

Mid 2015 (expected): FIPS 202 official publication

36 / 45

The SHA-3 FIPS

FIPS 202: what is inside?

Content
Keccak instances for

4 hash functions
2 XOFs

Keccak-f all 7 block widths
even reduced-round versions
unlike AES FIPS that has only 1 of the 5 Rijndael widths

sponge construction

Concept: toolbox for building other functions
tree hashing, MAC, encryption, …
dedicated special publications (NIST SP 800-XX) under development

http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/index.html

37 / 45

http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/index.html

The SHA-3 FIPS

XOF: eXtendable Output Function

“XOF: a function in which the output can be extended to any length.”

Good for full domain hash, stream ciphers and key derivation
[Ray Perlner, SHA 3 workshop 2014]

Quite natural for sponge
keeps state and delivers more output upon request
bits of output do not depend on the number of bits requested

Allows simplification:
instead of separate hash functions per output length
a single XOF can cover all use cases:

H-256(M) = ⌊XOF(M)⌋256

38 / 45

The SHA-3 FIPS

Domain separation

Some protocols and applications need
multiple hash functions or XOFs
that should be independent

With a single XOF?
Yes: using domain separation

output of XOF(M||0) and XOF(M||1) are independent
…unless XOF has a cryptographic weakness

Generalization to 2n functions with D an n-bit diversifier

XOFD(M) = XOF(M||D)

Variable-length diversifiers: suffix-free set of strings

39 / 45

The SHA-3 FIPS

The XOFs and hash functions in FIPS 202

Four drop-in replacements identical to those in Keccak submission

Two extendable output functions (XOF)

Tree-hashing ready: Sakura coding [Keccak team, ePrint 2013/231]

XOF SHA-2 drop-in replacements
Keccak[c = 256](M||11||11)

⌊Keccak[c = 448](M||01)⌋224
Keccak[c = 512](M||11||11)

⌊Keccak[c = 512](M||01)⌋256
⌊Keccak[c = 768](M||01)⌋384
⌊Keccak[c = 1024](M||01)⌋512

SHAKE128 and SHAKE256 SHA3-224 to SHA3-512

40 / 45

The SHA-3 FIPS

Tree hashing

Features:
hash recomputation when modifying small part of file
parallelizable
performance:

function instruction cycles/byte
Keccak[c = 256]× 1 x86_64 7.70
Keccak[c = 256]× 2 AVX2 (128-bit only) 5.30
Keccak[c = 256]× 4 AVX2 2.87

CPU: Haswell with AVX2 256-bit SIMD
41 / 45

The SHA-3 FIPS

MAC (and key derivation)

0 f f

Key

…

Padded message

f ff

MAC

KMAC[K](M) = H(K||M)

XMAC[K](M,λ) = XOF(K||M||λ)
λ length of the output

XKDF: key derivation function based on XOF (XMAC)

HMAC [FIPS 198] no longer needed!

42 / 45

The SHA-3 FIPS

Stream encryption

0 f f

Key IV

f

Key stream

Encryption: add key stream to plaintext bit per bit

43 / 45

The SHA-3 FIPS

Efficient authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

Basis: using Keccak-f in Duplex construction
generic security equivalent to sponge [Keccak team, SAC 2011]
also for random generation with reseeding (/dev/urandom …)

Domain separation layer on top: duplexWrap

44 / 45

Conclusion

Questions?

http://sponge.noekeon.org/
http://keccak.noekeon.org/

45 / 45

http://sponge.noekeon.org/
http://keccak.noekeon.org/

	The SHA-3 competition
	The sponge construction
	Inside Keccak
	The SHA-3 FIPS

