Introduction to SHA-3 and KECCAK

Joan DAEMEN

STMicroelectronics and Radboud University

Crypto summer school 2015
Sibenik, Croatia, May 31 - June 5, 2015

1/45

Outline

The SHA-3 competition
The sponge construction
Inside KECCAK

The SHA-3 FIPS

2/45

The SHA-3 competition

Outline

The SHA-3 competition

3/45

Cryptographic hash functions

Function h from Zj to Z)
Typical values for n: 128, 160, 256, 512

[mputstring

Pre-image resistant: it shall take 2" effort to
m given y, find x such that h(x) =y

2nd pre-image resistance: it shall take 2" effort to
m given M and h(M), find another M’ with h(M’) = h(M)

m Collision resistance: it shall take 2"/2 effort to
m find x; # X, such that h(x;) = h(x,)

More general: should behave like a random oracle

The origins of the SHA-3 competition

B 2005-2006: NIST thinks about having a SHA-3 contest

MD5 and standard SHA-1 were damaged by attacks
SHA-2 based on the same principles than MD5 and SHA-1
open call for SHA-2 successor

..and for analysis, comparisons, etc.

m October 2008: Deadline for proposals

more efficient than SHA-2

output lengths: 224, 256, 384, 512 bits

security: collision and (2nd) pre-image resistant
specs, reference and optimized code, test vectors
design rationale and preliminary analysis

patent waiver

The SHA-3 competition

m First round: October 2008 to summer 2009
m 64 submissions, 51 accepted
m 37 presented at 1st SHA-3 candidate conf. in Leuven, February 2009
m many broken by cryptanalysis
m NIST narrowed down to 14 semi-finalists
m Second round: summer 2009 to autumn 2010
m analysis presented at 2nd SHA-3 conf. in Santa Barbara, August 2010
m NIST narrowed down to 5 finalists
m Third round: autumn 2010 to October 2012
m analysis presented at 3rd SHA-3 conf. in Washington, March 2012

m October 2, 2012: NIST announces KEccak as SHA-3 winner

NIST SHA-3: the battlefield

B3

16/06/2009
(AR v
2005 2006 2007 2008 I 2009 2010 2011 2012
I A g | T
-

[courtesy of Christophe De Canniére]

7/45

The sponge construction

Outline

The sponge construction

8/45

The sponge construction

Sponge origin: RADIOGATUN

m Initiative to design hash/stream function (late 2005)
m rumours about NIST call for hash functions
m starting point: fixing PANAMA [Daemen, Clapp, FSE 1998]
m with long-time colleagues Gilles Van Assche and Michaél Peeters
m and ST Italy colleague Guido Bertoni joining in

m RADIOGATUN [Keccak team, NIST 2nd hash workshop 2006]

m more conservative than PANAMA
m arbitrary output length
m expressing security claim for arbitrary output length function

m Sponge functions [Keccak team, Ecrypt hash, 2007]
m random sponge instead of random oracle as security goal

m sponge construction calling random permutation
m ... closest thing to a random oracle with a finite state ...

The sponge construction

The sponge construction

) 4

@V*N
~

N N N N
Yy Yy Y Y
r| |0
f ! f f
c|]0
/ / / /

/

absorbing : squeezing

m Generalizes hash function: extendable output function (XOF)
m Calls a b-bit permutation f, with b =r+¢

m r bits of rate

m c bits of capacity (security parameter)

10/45

The sponge construction

Generic security: indistinguishability

F ol SA RO

m Success probability of distinguishing between:

m ideal function: a monolithic random oracle RO
m construction S[F] calling an random permutation F

m Adversary D sends queries (M, £) according to algorithm
m Express Pr(success|D) as a function of total cost of queries N
m Problem: in real world, F is available to adversary

11/45

The sponge construction

Generic security: indifferentiability iaurer et al. (2004

SI7]

-

F

RO

f—

PIRO]

S

D

m Applied to hash functions in [Coron et al. (2005)]

m distinguishing mode-of-use from ideal function (RO)
m covers adversary with access to permutation F at left
m additional interface, covered by a simulator at right

m Methodology:

m build P that makes left/right distinguishing difficult
m prove bound for advantage given this simulator P
m P may query RO for acting S-consistently: P[RO]

12/45

The sponge construction

Generic security of the sponge construction

Concept of advantage:

Pr(success|D) = % + %Adv(D)

Theorem (Bound on the RO-differentiating advantage of sponge)

>
A
%

- 2C+1
A: differentiating advantage of random sponge from random oracle
N: total data complexity
C: capacity
[Keccak team, Eurocrypt 2008]

Implications of the bound

m Let D: n-bit output pre-image attack. Success probability:

m for random oracle: Pyre(D|RO) = q27"
m for random sponge: Ppre(D|S[F]) = ?

m A distinguisher D with A = Ppre(D|S[F]) — Ppre(DIRO)
m do pre-image attack
m if success, conclude random sponge and RO otherwise

2
m But we have a proven bound A < X, so

2
Pore(D|S[F]) < Ppre(D|RO) + St

m Can be generalized to any attack
m Note that A is independent of output length n

14/45

The sponge construction

Implications of the bound (cont’d)

m Informally, random sponge is like random oracle for N < 2¢/2
m Security strength for output length n:

m collision-resistance: min(c/2,n/2)

m first pre-image resistance: min(c/2,n)

m second pre-image resistance: min(c/2,n)
m Proof assumes fis a random permutation

m provably secure against generic attacks

m ..but not against attacks that exploit specific properties of f

m No security against multi-stage adversaries

15/45

Design approach

Hermetic sponge strategy
® Instantiate a sponge function
m Claim a security level of 2¢/2

Our mission

Design permutation f without exploitable properties

16/45

The sponge construction

How to build a strong permutation

m Like a block cipher

m Sequence of identical rounds

m Round consists of sequence of simple step mappings
m ..but not quite

m No key schedule
m Round constants instead of round keys
m Inverse permutation need not be efficient

17/45

Inside KECCAK

Outline

Inside KECCAK

18/45

Inside KECCAK

KECCAK]r,]

m Sponge function using the permutation KECCAK-f

m 7 permutations: b € {25, 50,100, 200, 400, 800, 1600}
.. from toy over lightweight to high-speed ...

19/45

Inside KECCAK

KECCAK]r,]

m Sponge function using the permutation KECCAK-f
m 7 permutations: b € {25, 50,100, 200, 400, 800, 1600}
.. from toy over lightweight to high-speed ...
m SHA-3 instance: r = 1088 and ¢ = 512

m permutation width: 1600
® security strength 256: post-quantum sufficient

19/45

Inside KECCAK

KECCAK]r,]

m Sponge function using the permutation KECCAK-f
m 7 permutations: b € {25, 50,100, 200, 400, 800, 1600}
.. from toy over lightweight to high-speed ...
m SHA-3 instance: r = 1088 and ¢ = 512
m permutation width: 1600
® security strength 256: post-quantum sufficient
m Lightweight instance: r = 40 and ¢ = 160

m permutation width: 200
m security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

19/45

Inside KECCAK

The state: an array of 5 x 5 x 2¢ bits

state

Vlz
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

20/45

Inside KECCAK

The state: an array of 5 x 5 x 2¢ bits

lane

Vlz
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

20/45

Inside KECCAK

The state: an array of 5 x 5 x 2¢ bits

slice

Vlz
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

20/45

Inside KECCAK

The state: an array of 5 x 5 x 2¢ bits

row

Vlz
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

20/45

Inside KECCAK

The state: an array of 5 x 5 x 2¢ bits

column

Vlz
X

m 5 x 5 lanes, each containing 2¢ bits (1, 2, 4, 8, 16, 32 or 64)
m (5 x 5)-bit slices, 2¢ of them

20/45

Inside KECCAK

X, the nonlinear mapping in KEcCAK-f

m “Flip bit if neighbors exhibit 01 pattern”
m Operates independently and in parallel on 5-bit rows
m Cheap: small number of operations per bit

21/45

6’, a first attempt at mixing bits

m Compute parity ¢, of each column
m Add to each cell parity of neighboring columns:

bx,y,z = 0xy,z @D Cx—1,7 D Cxt1,2

m Cheap: two XORs per bit

1 column parity

22/45

Diffusion of 8’

1+ (1+y+y* +y> +y*4) (x +x4)
(mod (1+x°,1+y5,1+2"))

23/45

Diffusion of 6’ (kernel)

1+ (14+y+y*+y +y4) (x+x4)
(mod (1+x°,1+y5,1+2"))

24/45

Inside KECCAK

Diffusion of the inverse of 6’

14+ (1+y+y* +y2 +y4) (X + %)
(mod (1+x°,1+y5,1+2"))

25/45

Inside KEccAk

p for inter-slice dispersion

m We need diffusion between the slices ...
m p: cyclic shifts of lanes with offsets

m Offsets cycle through all values below 2°

26/45

Inside KEccAk

1 to break symmetry

m XOR of round-dependent constant to lane in origin
m Without ¢, the round mapping would be symmetric
m invariant to translation in the z-direction
m susceptible to rotational cryptanalysis
m Without ¢, all rounds would be the same
m susceptibility to slide attacks
m defective cycle structure

m Without 1, we get simple fixed points (000 and 111)

A first attempt at KECCAK-f

® Round function: R=10pof oy
m Problem: low-weight periodic trails by chaining:

m): propagates unchanged with weight 4
m 0’: propagates unchanged, because all column parities are 0
m p: in general moves active bits to different slices ...

..but not always

28/45

The Matryoshka property

m Patterns in Q' are z-periodic versions of patterns in Q
m Weight of trail Q' is twice that of trail Q (or 2" times in general)

29/45

Inside KEccAk

7t for disturbing horizontal/vertical alignment

° . X
'@ 4@3 "Q;;)“
° ® «
o |® X
x| & L :\ Q\
. ® &
1] MR
e | ¥ ° Al

. X 0 1\ /X
axvy <_ axlvy/ Wlth y - 2 3 y/

30/45

A second attempt at KECCAK-f

m Round function: R=1o0mopof oy

m Solves problem encountered before:

m ;T moves bits in same column to different columns!

Almost there, still a final tweak ...

31/45

Tweaking 6’ to 0

1+ (14+y+y2+y° +y4) (x+x42)
(mod (1+x°,1+y%, 1+ 2"))

32/45

Inside KECCAK

Inverse of 8

1+ (1+y+y*+y +y4)Q,
with Q = 1+(1—|—x—|—x4z)71 mod (1+ x°,1+ z%)

m Qs dense, so:

m Diffusion from single-bit output to input very high
m Increases resistance against LC/DC and algebraic attacks

33/45

Inside KECCAK

KECCAK-f summary

m Round function:
R=1oxomopo 0
m Number of rounds: 12 + 2/

m KeccAk-f[25] has 12 rounds
m KECCAK-f[1600] has 24 rounds

34/45

The SHA-3 FIPS

Outline

The SHA-3 FIPS

35/45

The long road to the SHA-3 FIPS

m February 2013: NIST-KECCAK-team meeting

m SHA-2 replacement by now less urgent
m ..but KEccAk is more than just hashing!

NIST disseminates joint SHA-3 proposal
Summer 2013: Snowden revelations

m alleged NSA backdoor in DUAL EC DRBG
m SHA-3 proposal framed as “NIST weakening KEccak”

Early 2014: standard takes shape addressing public concerns
Friday, April 4, 2014: draft FIPS 202 for public comments
August 2014: NIST announces plans at SHA-3 conference
Mid 2015 (expected): FIPS 202 official publication

36/45

FIPS 202: what is inside?

m Content
m KECCAK instances for

m 4 hash functions
m 2 XOFs

m Keccak-f all 7 block widths

m even reduced-round versions
m unlike AES FIPS that has only 1 of the 5 Rijndael widths

® sponge construction

m Concept: toolbox for building other functions

m tree hashing, MAC, encryption, ...
m dedicated special publications (NIST SP 800-XX) under development

http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/index.html

37/45

http://csrc.nist.gov/groups/ST/hash/sha-3/Aug2014/index.html

XOF: eXtendable Output Function

“XOF: a function in which the output can be extended to any length.”

m Good for full domain hash, stream ciphers and key derivation
[Ray Perlner, SHA 3 workshop 2014]
m Quite natural for sponge
m keeps state and delivers more output upon request
m bits of output do not depend on the number of bits requested
m Allows simplification:

m instead of separate hash functions per output length
m a single XOF can cover all use cases:

H-256(M) = |XOF(M) |56

38/45

The SHA-3 FIPS

Domain separation

m Some protocols and applications need

m multiple hash functions or XOFs
m that should be independent

m With a single XOF?
m Yes: using domain separation

m output of XOF(M||0) and XOF(M]||1) are independent
m ..unless XOF has a cryptographic weakness

m Generalization to 2" functions with D an n-bit diversifier
XOFp (M) = XOF(M||D)

m Variable-length diversifiers: suffix-free set of strings

39/45

The SHA-3 FIPS

The XOFs and hash functions in FIPS 202

m Four drop-in replacements identical to those in KECCAK submission
m Two extendable output functions (XOF)

m Tree-hashing ready: SAKURA coding [Keccak team, ePrint 2013/231]

XOF

SHA-2 drop-in replacements

Keccak[c = 256](M||11||11)

| KECCAK[C = 448](M||01) | 224

Keccak[c = 512](M||11]|11)

| KEccAk[c = 512](M||01) | ;56
| KECCAK|[c = 768](M]|01) |34
| KECCAK[c = 1024](M||01) | 51,

SHAKE128 and SHAKE256

SHA3-224 to SHA3-512

40/45

The SHA-3 FIPS

Tree hashing

Features:

m hash recomputation when modifying small part of file

m parallelizable
m performance:

function instruction cycles/byte
KEccAK([c = 256] x 1 | x86_64 7.70
KECCAK[c = 256] x 2 | AVX2 (128-bit only) 5.30
KECCAK[Cc = 256] X 4 | AVX2 2.87

CPU: Haswell with AVX2 256-bit SIMD

41/45

MAC (and key derivation)

Key Padded message MAC
A
] Y M) Y) Y) 4)
> O O o> H>
0 f f fl . f f
> > > — >
I AN O O

m KMAC[K](M) = H(K||M)
m XMAC[K](M,) = XOF(K||M||A)
m A length of the output
m XKDF: key derivation function based on XOF (XMAC)
m HMAC [FIPs 198] no longer needed!

42/45

The SHA-3 FIPS

Stream encryption

Key | IV
v O a
D> > >
ol |f | f | f
My
Key stream

m Encryption: add key stream to plaintext bit per bit

The SHA-3 FIPS

Efficient authenticated encryption

Key | IV Padded message MAC
A
Y) Y M) Y 4 M)
&> O O o H>
o FLL L L L]
Yy _/
Key stream

m Basis: using KEccAk-f in Duplex construction

® generic security equivalent to sponge [Keccak team, SAC 2011]
m also for random generation with reseeding (/dev/urandom ...)

m Domain separation layer on top: duplexWrap

44/45

Conclusion

Questions?

http://sponge.noekeon.org/
http://keccak.noekeon.org/

45/45

http://sponge.noekeon.org/
http://keccak.noekeon.org/

	The SHA-3 competition
	The sponge construction
	Inside Keccak
	The SHA-3 FIPS

