Mallory – a threat to your mobile device?

Lynn Margaret Batten

IT Security Research Services &

Deakin University, Melbourne, Australia

June 2015

OUTLINE OF THE TALK

- Smart devices versus PCs
- WebView versus Web 2.0
- Tracking
- Certificates
- Mallory
- Countermeasures.

On a desktop machine:

- SSL secures transmissions between a browser and a web server.
- Applications are Web-based using Web 2.0 technologies (allowing creation and sharing of online information) and can be displayed on the in-built web browser.
- Browsers have a pre-installed list of trusted CAs and communicate with a web server that has been issued a certificate from one of these CAs.
- The initial step is an exchange of SSL certificates issued by a Certificate Authority.

On the smartphone platform:

- APPS can be either web- or client-based.
- Client-based applications use the WebView class to host HTML content in an APP.
- Smartphones are sold with a set of pre-installed root certificates and APPs.

Web 2.0 versus WebView

- A Web-based application uses Web 2.0 technologies: creation and sharing of online information, and display on the in-built web browser.
- Mobile operating systems provide a client-based web container, called 'WebView' which hosts HTML content in an APP.
- Mobile browsers provide less support for display of connection details and less warning of mixed content on html pages than desktop browsers.

Web 2.0 versus WebView security

- Two essential pieces of Web 2.0's security infrastructure are weakened if WebView and its APIs are used:
 - the Trusted Computing Base at the client side, and
 - the sandbox protection implemented by browsers.
- Using <u>addJavascriptInterface()</u> allows JavaScript to control your Android application. This can be a dangerous security issue.
- With WebView, many attacks can be launched either against APPs or by them; in particular, the current approach to sandboxing to test potential malware is impeded. [1,2]

THE ROLE OF ADVERTISING

- Developers include advertising libraries provided by official APP sites or by third-party advertising companies (e.g. Flurry, InMobi).
- APP developers earn revenue from in-application advertisements and are encouraged to market their APPs free of charge; the more advertising libraries embedded in their APPs, the higher the revenue.
- They also want to identify user preferences in order to offer customized services; for this identifying the user and/or device is necessary.

How this information is obtained

- There are several common methods of obtaining the above information. These include:
 - Malware
 - Permission system abuses via APPs
 - MiTM attacks
 - Certificate compromise.

I will consider each of them in this talk.

MALWARE

Malicious Software:

- You may download software that can monitor where you go online and record your keystrokes.
- This allows the software to record confidential Internet banking passwords, logons, and other personal information.
- Criminals can then access that information to commit fraud.

SMARTPHONE APPS and MALWARE

- Smartphones offer APPs from both official sites and third-party markets.
- Official markets regularly test APPs to make sure they do not contain malware.
- In third-party markets, APPs are not checked to determine if they are safe.
- Individuals can post APPs on third-party markets which look similar to official market APPs but which contain malware.

SOME APPS YOU MAY HAVE ON YOUR SMARTPHONE:

SECURING APPS

- All operating system providers attempt to protect the user from abuse of APPs.
- The Android (Google) framework asks the user at APP install-time to authorise connections the APP may need to make.
- Microsoft, Blackberry and Apple all have their own ways of achieving security goals to protect the user.

SAMPLE PERMISSIONS

Most commonly used permissions

Permission ID Permission Name	
pms0001	INTERNET
pms0004	WRITE_EXTERNAL_STORAGE
pms0005	READ_PHONE_STATE
pms0006	ACCESS_NETWORK_STATE
pms0007	VIBRATE
pms0011	READ_LOGS
pms0013	RECEIVE_BOOT_COMPLETED
pms0021	SEND ₋ SMS
pms0023	ACCESS_WIFI_STATE
pms0030	READ_SMS
pms0031	WRITE_SMS

ADVERTIZING AND APPS

- The business model major challenge in the development of APPs.
- Solved by means of advertising revenue.
- Google offers an APP software development kit that enables Android developers to add advertising libraries into their applications to generate revenue.
- Third-party application developers are motivated by the revenue earned from APP advertising and embed many ads in their APPs.

BENEFITS & THREATS OF ADS

- From an ad, the OS connects to an advertizing server which might collect the IMEI code or the IMSI number found in the sim card, thus identifying the mobile device.
- Such identification allows developers to offer customized services.
- Researchers have found APPs in the APP markets which send these phone identifiers to developers without informing the user.

TRACKING SETTINGS

- On smartphones, all major operating systems (Google, Apple, Microsoft, Blackberry) allow the user to adjust tracking settings related to *Location Services* and to *Advertizing*.
- The setting can usually be turned 'off' or 'on'; in some cases tracking cannot be turned off but can be 'limited'.

MY TEAM'S TEST SETUP

- My team decided to check these settings to determine how well they worked.
- We set up a method based on easily available software linking to wifi connections.
- ▶ The software we used is called *Mallory*.
- We used the setup to test what data is captured when phones are being tracked.

THE MALLORY WIFI INTERCEPT SETUP

Smartphones: Windows Phone 8 (left) & BlackBerry 10 (right)

Laptop running Mallory on a virtual machine

External Servers

CONTRIBUTIONS OF MY TEAM IN THIS AREA

- We demonstrate that, without any explicit mention of it in the Terms and Conditions agreement, advertising libraries can access the mobile device's Device ID and Subscriber ID.
- We estimate that there are, on average, three advertising libraries included in any application downloaded from third-party markets.
- We observe that Android APPs that make use of permission systems are also likely to track the activity timeline of a user.

WHAT IS TRACKED?

- For location, the network address and global position (GPS) are obtained.
- For advertising, the unique identifiers of the device and of the SIM card are obtained.
- The user would normally expect that if she turns 'off' a tracking setting, then none of this information would be collected.
- My team's research showed that this is not the case:

Data Leaked from Android APPs with Tracking OFF (from a sample of 102)

Keywords (Android)

Data Leaked from iOS APPs with Tracking OFF (from a sample of 102)

Keywords (iOS)

HOW ABOUT TRACKING ON?

- My team also determined that when tracking (for either location or advertising) was turned on, the user's smartphone was not always tracked.
- We did similar work, obtaining similar results, with Blackberry and Windows 8 smartphones.
- APPs for iOS and Android were chosen if they were developed by the same developer; this was also true for Blackberry and Windows APPs. (So we could observe differences in developer behaviour.)

SUMMARIZING OUR RESULTS

- Applications are capable of leaking phonerelated information without the user's knowledge.
- Third-party advertising libraries were the principal cause of all the information leaks that were recorded for our datasets.
- Apps are not updated to reflect any updated protections of the host OS.
- Since APPs with advertising are often not malicious, they are not identified by antivirus software.

TAKING MALLORY FURTHER

- Once we had Mallory set up between a device and a server, we tested its use in 'Man-inthe-Middle' attacks.
- In particular, we were interested in capturing and reading data between the phone and a server.
- Such connections, especially to 'secured' websites are based on certificates used to ensure a 'trusted relationship'.

An X.509 certificate contains the digitally signed ID of the issuer

Certificate Verification

A digital certificate links a subject identity and a public/private key in a signed and therefore verifiable digital document.

- The subject of the certificate must match the resource subject (eg.URL)
- The validity period must be within the time frame the certificate is planning on being used (and must be unrevoked).
- The certificate must be used by a trusted Certificate Authority. (Match with an existing certificate will do.)

Example of a web browser certificate

Disabling some of the 160 Root Certs on an Android Smartphone

MISUSE OF CERTIFICATES:

- From a study quoted in [*] on https use, of 13,500 Android APPS tested, over1000 did not validate the host name.
- Any CA can issue a browser-acceptable certificate for any site.
- "In the research literature, it is becoming more common for threat models to assume an adversary possesses a valid certificate for a targeted site."

[*]. Clark and van Oorschot (2012). 'SoK:SSL and HTTPS'. Proceedings of the IEEE Symposium on Security and Privacy.

Man-in-The-Middle Attacks

The Mallory setup is described at https://bitbucket.org/IntrepidusGroup/mallory/ /wiki/Home

- We set up MiTM attacks against smartphones Android v.4+, iOS v.6.2, Blackberry Z10 and Windows 8,
- using laptop software:
 - Oracle VM VirtualBox
 - Ubuntu

Man-in-the-Middle Attacks

- MiTM is an active eavesdropping attack.
- The attacker inserts himself between the client/server communication flows.
- Once inserted, the attacker relays traffic to and from the client and server without either endpoint noticing the presence of a third-party.
- Attackers are now focusing on smartphone users as their MiTM victims.
- We describe three popular attacks (SSL Hijacking, SSL Stripping, DNS Spoofing) which target smartphone applications.

SSL HIJACKING

Phase 1:

- Using social engineering, Eve finds out Alice's favourite games, and
- tricks her to install a free application.
- The free app contains a fake SSL certificate.

Phase 2:

- Eve sets up a wifi hotspot near Alice's device, and
- captures and decrypts all the traffic from and to the device
- as shown in the next Figure.

SSL HIJACKING DIAGRAM

SSL STRIPPING

- When a user types https, http or part of a URL, normally, the application directs the traffic over an HTTPS connection;
- The victim believes he is communicating over an HTTPS connection.
- The MiTM SSL Strip attack intercepts the HTTPS redirect and maps the link to its HTTP equivalent.
- The attacker communicates with the server over an HTTPS connection, while the client (unknowingly) receives traffic over an HTTP connection.
- This is depicted in the next Figure.

SSL STRIPPING DIAGRAM

DNS SPOOFING

- This MiTM attack targets the DNS protocol which translates logical web addresses into their corresponding IP addresses.
- To carry out DNS Spoofing, the attacker
 - intercepts a DNS query,
 - extracts its unique ID, and
 - creates a fake DNS response for the client.
- Currently, such attacks cannot be easily detected on the smartphone.

SSL PINNING

- Attempts to prevent SSL Hijacking.
- Ensures that the application checks the server's certificate against a known copy bundled in the application before it is deployed on the market.
- Is the responsibility of the application developer.
- The developer specifies in the APP source code the certificates that should be trusted.

LIMITATIONS OF SSL PINNING

- Relies heavily on correct implementation by the developer.
- Can be disabled by reverse engineering the application and forcing it to accept spoofed SSL certificates.
- Developers using third-party advertising libraries are required to consent to the use of the certificates provided by the advertising companies.
- Implementation of SSL Pinning varies depending on the host OS.

DNS and DNSSEC

- The Domain Name System (DNS) is a query mechanism linking logical names to IP addresses.
- No authentication checks are done during this process, which provides opportunities for attackers to divert traffic via MiTM proxies.
- DNSSec (introduced in 1997) uses Public Key Cryptography to authenticate the origin of data and data integrity.
- Digital signatures are computed for legitimate URLs and stored;
- When directing to an IP address, a digital signature is computed and checked against the stored data.

LIMITATIONS OF DNSSEC

- Bandwidth and storage requirements are increased by about a factor of 6 over DNS.
- The most important advantages of enhanced DNS transaction security can be reached using existing infrastructures and technologies.
- The amount of software that allows implementation of DNSSec on DNS servers is limited.
- All the layers including the Root zone have to use the same digital signing algorithm.

SETTING UP MALLORY*

Step 1: Set up Virtual Machine (VM)

- Download executable file onto laptop from https://www.virtualbox.org/wiki/Downloads
- Run .exe file and install Oracle VirtualBox
- Download Ubuntu 11.04* from http://old-releases.ubuntu.com/releases/natty/
 - Either burn the image on a CD or download it on a USB stick.

*Copyright V. Moonsamy.

Step 1 – continued

- Important: Make sure that Network settings for Ubuntu* are as below:
- Back to Virtual Box, create a new VM and install Ubuntu.

SETTING UP MALLORY - cont'd

- Step 2: Install Mallory in VM.
- Step 3: Configure Mallory add DNS settings and usernames, and restart.
- Step 4: Configure Smartphone on same network as the PPTP server (connected to a wireless access point on the LAN).

The steps cont'd

- Step 5: Start Mallory by opening two consoles on the Ubuntu VM.
- Step 6: Configure the Mallory GUI.
- Step 7: Access the Internet on the smartphone over the VPN; Mallory will capture the traffic.

See the next slide:

Mallory picking up a plaintext password

POST /ServiceLoginAuth HTTP/1.1 Accept-Encoding: gzip,deflate Origin: https://accounts.google.com Accept-Language: en-GB,en;q=0.8

User-Agent: Mozilla/5.0 (BB10: Touch) AppleWebKit/537.10+ (KHTML, like Gecko) Version/10.1.0.1720 Mobile Safari/537.10+

Content-Type: application/x-www-form-urlencoded

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer:

https://accounts.google.com/ServiceLogin?service=mail&passive=true&continue=http://mail.google.com/mail/?ui%3Dmobile %26zyp%3Dl&scc=1<mpl=ecobxgm&nui=5&btmpl=mobile

Cookie: NID=67=IKIuOCLYvQDU7f-II1YbC3dDQIhB--

CFTwe0R0o9MAwObVy8DYSnUi3aQOWnjH4cVtHxw_NQj_UzPZTpJysp4aYGzis1dgVGkXNgEOGNIxE7rJdzhk5Br9rLSje3igvN; utma=72592003.234945783.1373463266.1373463266.1373463266.1;

_utmz=72592003.1373463266.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); GAPS=1:-

LqM0ZSXIHv23xjJX0LWJC4EuEx2FA:rBFyGu7EIZNwzGJG; GALX=FLvl70EJhG0;

GMAIL_LOGIN=T1373500230396/1373500230396/1373500252528

Host: accounts.google.com Connection: keep-alive Content-Length: 648

continue=http%3A%2F%2Fmail.google.com%2Fmail%2F%3Fui%3Dmobile%26zyp%3Dl&service=mail&nui=5&dsh=-2795779 443633958655<mpl=ecobxgm&btmpl=mobile&scc=1&GALX=FLvl70EJhG0&timeStmp=&secTok=&_utf8=%E2%98%83&bgr esponse=%21A0IH_smkRoMjv0Rqa5OL12ixkgIAAAEhUgAAADUqAO7cua7BGERsENoSpxCknWTkPdErnAtG5V8aUkrJGLGxFFWR6 k90NxZNau5c_h_lb44O5oFw6ljmeVxR2HO6SaJix4TFfaPC--

esq4_3g26qvqnkcUrfoPkEeRg_Vok4dOKTwOaKUXHaZEd3NMkH8F_T8eTbUyX-8E_Jm7qZNQ39jn24eXWpCTaMx_9dva74Jd5NPAvDAfjS2i2ms-kflAi4aaEJqYvhLCPM6lyoMyv7ja_kYaWlOgXogq2n-aKbIFluaWPl659J5rfMLyaY0Q7048KA5mj1_yuioZAbQ9YmCSQruFthUhPi-a4SNXS&Email=rahul&Passwd=rahul123&signIn=Sign+in&PersistentCookie=yes&rmShown=1

SOME OF THE CHALLENGES WE FACED IN SETTING UP MALLORY

- Unstable wifi connections;
- Different OS use different terminology and require different settings:
 - With Android and iOS we used a VPN connection,
 - VPN was not available with Blackberry and Windows
 a wifi adapter was used instead.

UPPER LEVEL SUGGESTIONS FOR MITIGATING THESE PROBLEMS

- Re advertising
 - give the user the option of denying sending data to third parties.
 - make developers adhere to strict rules about certificate use.
 - Companies such as http://www.geoedge.com
 offer to ensure that your 'mobile ads' are 'clean and safe', by checking for
 - Malware
 - Malicious Code Activities
 - Redirects

Enhancement of certificate trust models

See the research literature including:

- J. Clark and P.C.van Oorschot (2012). 'SoK:SSL and HTTPS'. Proceedings of the IEEE Symposium on Security and Privacy.
- Yasodharan, R., R. Sivabalakrishnan, and P. Devendran. 2015 "Trusted Routing with an Efficient Certificate Revocation for Mobile Ad Hoc Network." IJISET
- Mall, Tarun, and Samarth Gupta. 2014 "Critical Evaluation of Security Framework in Android Applications: Android-level security and Application-level security." Journal of Computers and Electronics Engineering.
- Vallina-Rodriguez, Narseo, et al. 2014 "A Tangled Mass: The Android Root Certificate Stores." Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies. ACM.

Measures that users can apply

User understanding and user behavior are key aspects that can mitigate the propagation of rogue applications. This includes:

- User comprehension of OS security
- User carries out a thorough background check before downloading an APP
 - Read reviews, ratings, number of downloads, ...
- Modify Phone Settings to turn off targeted advertising
 - Does not stop ads, only prevents APP from using unique device IDs as targets

(Explained at http://dottech.org/21999/android-tip-turn-off-interest-based-ads-by-flipping-a-switch-in-android-market/)

Bibliography

- 1. Luo et al. 2011 'Attacks on WebView in the Android system. In *Proceedings of the 27th Annual Computer Security Applications Conference* (pp. 343-352). ACM.
- 2. Luo, T. (2014). Attacks and countermeasures for WebView on mobile systems. PhD dissertation, Syracuse University, May 2014
- 3. Alazab, M., Moonsamy, V., Batten, L., Tian, R. & Lantz, P. (2012). Analysis of Malicious and Benign Android Applications. In proceedings of International Conference Distributed Computing Systems (ICDCS 2012). Macau, China.
- 4. Enck, H. Analysis Techniques for Mobile Operating System Security, PhD thesis, Pennsylvania State University, 2011.
- 5. Enck, W., Gilbert, P., Chun, B. G., Cox, L. P., Jung, J., McDaniel, P. & Sheth, A. N. (2010). TaintDroid: An information-flow tracking system for realtime privacy monitoring on smartphones. *Proceedings of the 9th USENIX conference on Operating systems design and implementation*.
- 6. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., & Smith, M. (2012). Why Eve and Mallory love Android: An analysis of Android SSL (in) security. In *Proceedings of the 2012 ACM conference on Computer and communications security*. ACM.
- 7. Moonsamy, V.; Alazab, M. & Batten, L. (2012), Towards an Understanding of the Impact of Advertising on Data Leaks' In *International Journal of Security and Networks* (IJSN). Vol. 7, 181–193.
- 8. Moonsamy, V. & Batten, L. (2012), Zero Permission Android Applications: Attacks and Defences, In Proceedings of the 3rd Workshop on Applications and Techniques in Information Security (ATIS), Melbourne, Australia, November 2012.
- 9. Moonsamy, V. and Batten, L. (2014), 'Mitigating Man-in-The-Middle Attacks on Smartphones a Discussion of SSL Pinning and DNSSec'. In proceedings of The Australian Information Security Management Conference, Perth, Edith Cowan University, pp. 5-13.
- 10. Rahulamathavan, Yogachandran, Veelasha Moonsamy, Lynn Batten, Su Shunliang, and Muttukrishnan Rajarajan. "An Analysis of Tracking Settings in Blackberry 10 and Windows Phone 8 Smartphones." In *Information Security and Privacy*, pp. 430–437. Springer International Publishing, 2014.
- 11. Pearce, P., Felt, A. P., Nunez, G. & Wagner, D. (2012). AdDroid: Privilege Separation for Applications and Advertisers in Android. *Proceedings of AsiaCCS*.